Discretization error due to the identity operator in surface integral equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretization error due to the identity operator in surface integral equations

Article history: Received 31 July 2008 Received in revised form 17 April 2009 Accepted 21 April 2009 Available online 3 May 2009

متن کامل

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

Discretization of Volterra Integral Equations

We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...

متن کامل

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

applying fuzzy wavelet like operator to the numerical solution of linear fuzzy fredholm integral equations and error ‎analysis

in this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy fredholm integral equations of the second kind with arbitrary kernels. we give the convergence conditions and an error estimate. also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2009

ISSN: 0010-4655

DOI: 10.1016/j.cpc.2009.04.020